Essentials of Java
Performance Tuning

Dr Heinz Kabutz Kirk Pepperdine

Java Champions

Our Typical Story

® Customer JoGoSlo Ltd calls us in desperation

— Millions of Rands invested

— Users complain about poor performance
e Customers consider abandoning the project

® Developers in a panic
— 6 man months already invested with no results
— Can almost reproduce the problem
— Still had some ideas what to do
— However management has lost confidence

® We have 5 days to diagnose problem

Design Patterns Course

Solve All Your Performance Problems

‘maximum solutions Design Patterns Course

Authors of Talk

® Kirk Pepperdine

— Engaged around the world to solve Java performance
problems

— http:/lIwww.javaperformancetuning.com

% g
v S
K

&S
ey ORMA e

maxmum solutions Design Patterns Course

Authors of Talk

® Heinz Kabutz

— The Java Specialists’ Newsletter
— Based in Cape Town, South Africa
— Moving to Crete, Greece towards end of 2006

— http://www.javaspecialists.co.za

maximum solutions

Project in Crisis

® What do people do under stress?
— Decision making skills are much impaired
— Not in learning mode

— Almost impossible to introduce new tools
e Tend to rely on the familiar

® Performance tuning requires own skillsets

— Takes time to learn

— When is a good time to learn CPR?

Panic Attack

® Lots of finger pointing between groups

® Without real evidence developers start to guess

— Start changing code (that’s what developers do)
e Convert Vector to ArrayL.ist
e Convert String to StringBuffer
e Add more threads
e Add more memory
 Focus on database interactions

— with unpredictable results...

® How do we avoid this?

Measure,

don't guess!

C) maximum solutions Design Patterns Course

Heap Usage after GC

Typical Production Environment

People

Usage Patterns,
Rates

l

|

Appllcatlon s

Contentlon

Threads,
Memory

JVM
: |

i

Hardware

CPU, Memory,
Disk. Network

10

@ maximum solutions Design Patterns Course

Hardware Resources

11,

O maximum solutions Design Patterns Course

Java Virtual Machine Resources

12 .

®:

Application

Design Patterns Course

Application

Lock
Contention

13,

Usage Patterns,
PeO ple Rates

® System usage patterns
— What they are doing?

® Rate of doing work?

14

Forward Propagation of Actions

® People telling application what to do

® Application tells the JVM what it needs done

— Direct consequence of what the people are asking

— And how application was coded

® JVM tells the hardware what it needs done
— Direct consequence of what the application is asking

— And how JVM was coded and configured

15

Backward Propagation of Trouble
® If hardware does not have enough capacity, people will
see bad response times

® If JVM is incorrectly configured, people will see bad
response times

® If application is suffering from contention, people will
see bad response times

® Therefore, the only information you start with is that
people are experiencing poor response times

® What to do next?

16

W5 of Investigative Journalism

® Five questions asked by investigators:
— Who ?
 Which resource is exhibiting the problem?
— What ?
 Observation: what do the users see?

— Where ?
 Which layer is exhibiting the problem?

— When ?
e Are there any peculiarities about when the problems occur?

— Why ?
 An explanation of the observation from system perspective

17

solutioné Design Patterns Course

Typical Production Environment

What-_ i
_[People ™

Where\ | l ILOCk \
\ Application Comenﬁon\kw
cPU Memor/

Hardware pi Networs -

ho

18 .

Plan of Action

® Review or set the performance targets
® Layer by layer performance investigation

® Start with hardware

— Work outward until we find overextended resource

® Need a repeatable test

— Need to know what the people are doing
— Need a test harness

— Need a realistic test environment

19

Design Patterns Course

JoGoSlo Test Environment

® Database did not have adequate amount of data

— Solution: Cloned the production database

® Did not have a test harness

— Solution: Introduced Apache JMeter

20 ,

Test Harness

® Software that simulates realistic user activity
— Includes normal activity, coffee breaks, user mistakes

— People will use system in unexpected ways

® Good test harness:

— Easily scripted to create our usage patterns
e Randomize test data input
» Ability to randomize think times
e Validate responses from server

— Monitor response times and other system parameters

21

Test Harness: Apache JMeter

® Project by Apache Software Foundation

— Open source

® Used extensively for testing web applications

— Can also be applied in other environments

® http://jakarta.apache.org/jmeter/index.html

22

File Edit Run Options Help

Design Patterns Course

9 4 TestPlan

'1?~ E‘ Thread Group
9 /% HITP Request

= m Widcard parameters
>/

-
|

ﬂ Keyword parameters
s @ Gaussian Random Timer

' WorkBench

- ,!) HTTP Proxy Server

| wBrowser-derived headers

w Browser-derived headers

HTTP Request

Name: |ftipsikeyword

~Weh Server

Server Name or IP

: [localhost

Port Number: (308

0

~HTTP Request

Protocol: |http | Method: @ GET () POST

Path: |itipsikeyword

Send Parameters With the Request:

[] Redirect Automatically [| Follow Redirects Use Keepdlive

Name: Value Encode? Include Equals?

keyword ${keyword}
Add Delete
~Send a File With the Request:
Filename: Browse...
Parameter Name: | |
MIME Type: | |
~Optional Tasks

[] Retrieve All Embedded Resources from HTML Files [_| Use as Monitor

23,

Q maximum solutions Design Patterns Course

e & Test Plan . >
tt
9 E" Thread Group/ Sage Fatiem

¢ /% HTTP Request
= m Browser-derived headers

- m Widcard parameters

' / tipsikeyword

= m Browser-derived headers

= m Keyword parameters

- @ Gaussian Random Timer—__ Randomized
WorkBench Timer

— 5'; HTTP Proxy Server —Traffic Recorder

24

solutin's Design Patterns Course

HTTP Request
Name: |rtipsikeyword

~Web Server

Server Name or IP: |Iocalhost
Port Number: (8080
~HTTP Request

Protocol: [ty | Method: @® GET () POST

Path: [itipsikeyword

[] Redirect Automatically [| Follow Redirects Use KeepAlive

Send Parameters With the Reguest:

Name: Value Encode? Include Equals?
keyword ${keyword} _
—_Parameterised
input
Add Delete

L5,

Realistic Test Environment

® Production environment?

— Not desirable and usually not an option

® QA environment should

— Perfectly resemble your production environment
 Data sizes, memory sizes, cache sizes, disk speeds,
network speeds, should be the same

— May need to consider the “when”
e Sometimes have to add external elements to test

® Don’t extrapolate!
— You do not know when you will hit the wall

26

“maximum so_Itions Design Patterns Course

Performance Wall

When will you hit the wall?

Response Time

Load 27 .

Who and Where

® Turn on monitoring of hardware

® Use the “what” to turn on additional low-impact monitoring,

such as:

Verbose GC logging
» -Xloggc:<filename>

JDBC logging
* e.g. pbspy
JNI logging
RMI logging
Socket logging

® Beware of Heisenberg Uncertainty!

 “You can’t observe a system without affecting the system”

28

Run the Benchmark

Isolate your system

Start system from known consistent point

Run JMeter or other test harness against system
Observe if the “what” matches the users’ experiences
Failures in the system should invalidate the run

Record everything

— Start time, end time, observations, response time, configurations,
date of birth, starsign, basically anything that you might or might
not need

— Use a physical notepad — mouse in left hand

29

How Long is Each Run?

® System must be in a steady state

— Issues about test harness that need to be considered
 Beyond the scope of this talk

® System should exhibit the problems experienced by
users

® Can be 30 seconds or 30 days
— Typically an hour

® Burn in the problem

30

Analysis

Hardware

— Carefully examine the output from monitoring and eliminate
underutilised components from the list

— Fully utilised components are bottlenecks

CPU

— Look at execution profile, such as —Xrunhprof

Memory

— Look at GC, caching, large DB queries, memory leaks

10 Wait
— Will prevent CPU from being fully utilised

If no hardware bottlenecks, look at the JVM layer

31

Java Virtual Machine

® Assuming hardware does not show problem

® Heap memory

— Not enough memory in virtual machine

® Lock Contention

— EXxcessive stop-the-world garbage collection

® If no JVM bottlenecks, look at application layer

32

Java Application Layer

® Thread lock contention

— Only thing that you would not have diagnosed by now

— Get thread dump
* See what they are waiting on
e Eliminate the expected

® If you have not found the problem by now, examine
your testing process

— It might help confirming that you have correctly simulated the
users

e Go visit the floor
« Examine run logs

33

maximum solutions Design Patterns Course

Bluedragon ThreadDump

Full thread dump Java HotSpot (TM) Server VM (1.4.2 08-b03 mixed mode) :
"RMI ConnectionExpiration-[192.168.0.15:34113]" daemon prio=1 tid=0x0892f658 nid=0x2d7a
waiting on condition [5b86f000..5086f494]
at java.lang.Thread.sleep (Native Method)
at sun.rmi.transport.tcp.TCPChannel$Reaper.run (TCPChannel.java:447)
at java.lang.Thread.run (Thread.java:534)

"RMI TCP Connection(902)-192.168.0.15" daemon prio=1 tid=0x41ell1l2b8 nid=0x2d7a runnable
[5ccff000..5ccffd14]

at java.net.SocketInputStream.socketRead((Native Method)

at java.net.SocketInputStream.read (SocketInputStream.java:129)

at java.io.BufferedInputStream.fill (BufferedInputStream.java:183)

at java.io.BufferedInputStream.read (BufferedInputStream.java:201)

- locked <0x49978800> (a java.io.BufferedInputStream)

at java.io.FilterInputStream.read(FilterInputStream.java:66)

at sun.rmi.transport.tcp.TCPTransport.handleMessages (TCPTransport.java)

at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run (TCPTransport)

at java.lang.Thread.run (Thread.java:534)

34,

maximum solutions Design Patterns Course

Bluedragon ThreadDump

"PingThread-8692809" daemon prio=1 tid=0x081a3058 nid=0x2d7a waiting on condition
[5bda9000..5bda%294]

at java.lang.Thread.sleep (Native Method)
at org.exolab.jms.client.rmi.RmiJdmsConnectionStub$PingThread. run (
RmiJdmsConnectionStub.java:249)

"EventManagerThread" daemon prio=1 tid=0x083101f8 nid=0x2d7a in Object.wait ()
[5caa9%9000..5caa%514]

at java.lang.Object.wait (Native Method)

- waiting on <0x47aa2800> (a java.lang.Object)

at java.lang.Object.wait (Object.java:429)

at org.exolab.jms.events.BasicEventManager.run (BasicEventManager.java)

- locked <0x47aa2800> (a java.lang.Object)

at java.lang.Thread.run (Thread.java:534)

"PingThread-18183604" daemon prio=1 tid=0x08136dc8 nid=0x2d7a waiting on condition
[5cc7£000..5cc7£494]

at java.lang.Thread.sleep (Native Method)
at org.exolab.jms.client.rmi.RmiJdmsConnectionStub$PingThread. run (
RmiJdmsConnectionStub.java:249)

35,

maximum solutions Design Patterns Course

Bluedragon ThreadDump

"RMI RenewClean-[192.168.0.15:34113]" daemon prio=1 tid=0x08la2c68 nid=0x2d7a in
Object.wait () [5bal0000..5bal0594]

at java.lang.Object.wait (Native Method)

- waliting on <0x4858a940> (a java.lang.ref.ReferenceQueue$Lock)

at java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:111)

- locked <0x4858a940> (a java.lang.ref.ReferenceQueues$Lock)

at sun.rmi.transport.DGCClientS$EndpointEntrySRenewCleanThread. run (
DGCClient.java:500)

at java.lang.Thread.run (Thread.java:534)

"BoundedThreadPool0-33" prio=1 tid=0x41lec8710 nid=0x2d7a in Object.wait ()
[5ca29000..5ca29594]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolSPoolThread. run (BoundedThreadPool)

- locked <0x47a520b8> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

36 ,

Design Patterns Course

maximum solutions

Bluedragon ThreadDump

"BoundedThreadPool0-32" prio=1 tid=0x5a159ed0 nid=0x2d7a runnable [5c9%9a9000..5c9%a9614]
java.net.SocketInputStream.socketReadl (Native Method)
java.net.SocketInputStream.read (SocketInputStream.java:129)

at
at
at
at
at
at
at
at
at

org
org
org
org
org
org
org

.mortbay.
.mortbay.
.mortbay.
.mortbay.
.mortbay
.mortbay.
.mortbay.

io.bio.StreamEndPoint.fill (StreamEndPoint.java:99)
jetty.bio.SocketConnector$Connection.fill (SocketConnector)
Jjetty.HttpParser.parseNext (HttpParser.java:257)
jetty.HttpParser.parseAvailable (HttpParser.java:192)

.Jetty.HttpConnection.handle (HttpConnection.java:293)

jetty.bio.SocketConnector$Connection.run (SocketConnector)
thread.BoundedThreadPool$PoolThread. run (BoundedThreadPool)

- locked <0x47a521f8> (a org.mortbay.thread.BoundedThreadPoolS$PoolThread)

37,

maximum solutions Design Patterns Course

Bluedragon ThreadDump

"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable [5c929000..5c929694]
at org.mortbay.jetty.HttpGenerator.prepareBuffers (HttpGenerator.java:878)
at org.mortbay.jetty.HttpGenerator.flushBuffers (HttpGenerator.java:681)
at org.mortbay.jetty.HttpGenerator.complete (HttpGenerator.java:671)
at org.mortbay.jetty.HttpConnection.doHandler (HttpConnection.java:388)
at org.mortbay.jetty.HttpConnection.access$1500 (HttpConnection.java:38)
at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete (

HttpConnection.java:598)
at org.mortbay.jetty.HttpParser.parseNext (HttpParser.java:487)
at org.mortbay.jetty.HttpParser.parseAvailable (HttpParser.java:196)
at org.mortbay.jetty.HttpConnection.handle (HttpConnection.java:293)
at org.mortbay.jetty.bio.SocketConnector$Connection.run (SocketConnector)
at org.mortbay.thread.BoundedThreadPoolS$SPoolThread. run (BoundedThreadPool)
- locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

38,

Design Patterns Course

Bluedragon ThreadDump

"BoundedThreadPool0-30" prio=1 tid=0x41e2f878 nid=0x2d7a in Object.wait ()
[5¢c8a9000..5c8a9714]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolS$PoolThread. run (BoundedThreadPool)

- locked <0x47a52298> (a org.mortbay.thread.BoundedThreadPoolS$PoolThread)

"BoundedThreadPool0-29" prio=1 tid=0x5a4c5650 nid=0x2d7a in Object.wait ()
[5¢c828000..5c828794]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolSPoolThread. run (BoundedThreadPool)

- locked <0x47a52108> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

"BoundedThreadPool0-28" prio=1 tid=0x5a4c53f8 nid=0x2d7a runnable [5c7a8000..5c7a8814]
at java.net.SocketInputStream.socketRead((Native Method)

at java.net.SocketInputStream.read (SocketInputStream.java:129)

at org.mortbay.io.bio.StreamkEndPoint.fill (StreamEndPoint.java:99)

at org.mortbay.jetty.bio.SocketConnector$Connection.fill (SocketConnector)

at org.mortbay.jetty.HttpParser.parseNext (HttpParser.java:257)

at org.mortbay.jetty.HttpParser.parseAvailable (HttpParser.java:192)

at org.mortbay.jetty.HttpConnection.handle (HttpConnection.java:293)

at org.mortbay.jetty.bio.SocketConnector$Connection.run (SocketConnector)

39,

maximum solutions Design Patterns Course
.l

Bluedragon ThreadDump

"BoundedThreadPool0-27" prio=1 tid=0x41e6a640 nid=0x2d7a in Object.wait ()
[5¢728000..5c728894]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolS$PoolThread. run (BoundedThreadPool)

- locked <0x47a52338> (a org.mortbay.thread.BoundedThreadPoolS$PoolThread)

"BoundedThreadPool0-26" prio=1 tid=0x41e693f8 nid=0x2d7a in Object.wait ()
[5c6a8000..5c6a8914]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolSPoolThread. run (BoundedThreadPool)

- locked <0x47a52248> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

"BoundedThreadPool0-25" prio=1 tid=0x086blc50 nid=0x2d7a in Object.wait ()
[5¢628000..5c628994]

at java.lang.Object.wait (Native Method)

- waiting on <0x47a4> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

at org.mortbay.thread.BoundedThreadPoolS$SPoolThread. run (BoundedThreadPool)

- locked <0x47a4e180> (a org.mortbay.thread.BoundedThreadPoolS$PoolThread)

40 ,

Design Patterns Course

Bluedragon ThreadDump

® According to client, system was idle

— Did not accept any more connection requests

® Let’s go back a few slides...

— Why was HttpGenerator.prepareBuffers() being called?

41

maximum solutions Design Patterns Course

Bluedragon ThreadDump

"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable [5c929000..5c929694]
at org.mortbay.jetty.HttpGenerator.prepareBuffers (HttpGenerator.java:878)
at org.mortbay.jetty.HttpGenerator.flushBuffers (HttpGenerator.java:681)
at org.mortbay.jetty.HttpGenerator.complete (HttpGenerator.java:671)
at org.mortbay.jetty.HttpConnection.doHandler (HttpConnection.java:388)
at org.mortbay.jetty.HttpConnection.access$1500 (HttpConnection.java:38)
at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete (

HttpConnection.java:598)
at org.mortbay.jetty.HttpParser.parseNext (HttpParser.java:487)
at org.mortbay.jetty.HttpParser.parseAvailable (HttpParser.java:196)
at org.mortbay.jetty.HttpConnection.handle (HttpConnection.java:293)
at org.mortbay.jetty.bio.SocketConnector$Connection.run (SocketConnector)
at org.mortbay.thread.BoundedThreadPoolS$SPoolThread. run (BoundedThreadPool)
- locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

42

‘maximum solutions Design Patterns Course

Addressing the Problem

® Add more hardware

— Often the cheapest solution

— 100% CPU - is it possible to add faster CPU?
 May not always solve the problem

43 |

O maximum solutions Design Patterns Course

Java Virtual Machine Tuning

® Configuration

— e.g. heap sizing, hotspot compilers, etc.

44

Application Code

® Otherwise, all roads lead back to application
— Implies coding changes
— Expensive, time consuming, error prone

— Need good regression testing

® Well desighed code makes changes easier

— DRY (don’t repeat yourself)
— SRP (single responsibility principle)
— Correct design patterns

* http://l[www.javaspecialists.co.za

45

Q ' ut Design Patterns Course

Application Profiling

® Java has built-in profiling tools
® Run the JVM with —Xrunprof

® Other alternatives available from

— http://www.javaperformancetuning.com

46 .

This is the Why!

® Profiling is the measurement that tells us “why”

— From there we can implement the fix
® Run benchmark to ensure problem solved
® Regression test

® Have you reached your performance target?

— If not, start from the beginning and find next bottleneck

— When problem #1 is solved, problem #2 might be gone
* Avoid fixing more than one problem at a time

47

C) maximum solutions Design Patterns Course

Heap Usage after GC

JoGoSlo Why?

® Discussions with client suggested database caching
— Suspected cached “SELECT * FROM very_large_table”

® Investigation confirmed memory leak

® Troublesome point

— Users claimed application sometimes recovered

® Question: is this from the database interaction or a
memory leak in a long-term temporary object?

® Hypothesis: Memory leak could be from HTTPSession

49

JoGoSlo Why?

® HTTPSession timeout correlated strongly with
decrease in memory

— Confirmed with memory profiler

e Output from memory profilers is often very confusing for
large systems

* This additional information helped us filter the memory
profiler

— Bingo!

® The HTTPSession was found to be retaining session
object, due to the improper scoping of Struts Sessions

50

@ maximum solutions Design Patterns Course

Conclusion

® Don’t measure, guess ...

— Then call us!

51,

JHUG Athens
May 20th 2006

Essentials of Java
Performance Tuning

Dr Heinz Kabutz heinz@javaspecialists.co.za
Kirk Pepperdine kirk@kodewerk.com

